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ABSTRACT

It is proposed to design and construct energy storage flywheel rotors as statically limp
tubes containing liquid mass, and to drive and support this rotating system (at least in

- part) directly, rather than through separately engineered subsystems. If the 'liquid" is
".* presumed thixotropic or viscous, nominally stiff structures subject to plastic flow are

included. At one extreme of the design range, nearly all the mass is in the liquid and
the only significant stresses are those in the wall of the containment; at the other
extreme, the statically limp structure is nearly "dry" and is formed into an oblate sur-
face by the centrifugal force of its own mass.The plausibility of the approach is
argued by analogy with various physical examples, tanging from the spinning lariat to
the design of reinforced concrete.

Results include the conclusion that in a limp structure, bonding between matrix
and fibers is not a primary issue, and that a thin rim of liquid restrained by radially
looped fibers has the same efficiency in using fiber material as when the fibers are used
to support a solid rim as radial spokes (standard thin rim efficiency). It is also
argued that both energy exchange and support can be provided for the flywheel rim
itself, without the need to supply either through the central axle.
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THE LIMP FLYWHEEL

Chapter I

INTRODUCTION

The flywheel is a universal, but not always appreciated, form of energy storage.
For example, the so-called "spinning reserve' of the power utility grid, which includes
both the rotating machinery at the power plant and at user installations, will hold a
system together for about 10 minutes after a major interruption.' This time scale is
only an order of magnitude short of that required for load peaking for the utility, or
for energy storage through shadow for a communication satellite. To deliberately
design flywheel for either of these purposes is largely a matter of the will and the
technology to do so.

Kinetic energy is stored as mv2/2, even if the mass is rotating and the velocity is
rotational rather than linear. Mass costs money, especially if it is engineered into a
high strength spinning structure.

One figure of merit for a flywheel is thus the energy storage per unit mass, which
is clearly proportional to the square of the speed with which that mass moves. An
energy storage of I Watt-hour per pound implies a peripheral speed of about 400 ft/s
for mass concentrated on the rim of a flywheel. At 25 w-hr/lb, typical of many orbi-
tal and land-mobile requirements, the peripheral speed is about 2000 ft/s.2 (The units
are bastard, but such is the nature of practical assertions.)

These speeds have two consequences. They imply high rates of rotation and con-
sequent problems in the design and operation of long-lived, low-friction, high-speed
bearings. They also imply a major problem with windage loss. At 400 ft/s windage
can be controlled by used of hydrogen fill gas; but 2000 ft/s requires a vacuum.

The northeast power blackout of November of 1965 was caused by cumulative trip-
ping of circuit breakers in the tie lines between Niagara Falls and downstate New
York. With Niagara Falls gone, there was a massive power outflow from metropol-
itan New York. The spinning reserve held up for about 15 minutes while the man
at the switches tried to get authorization by telephone to cut the city free. At that

0 point, the system unravelled. It turned out that the rotors of several large New
York city generators were lubricated by pumps which did not have backup emer-
gency power. Bearings were lost; and it was several days before the New York City
had full power again.

2 It can be argued that one should add the weight of the flywheel support and energy
conditioning systems to that of the wheel, thus raising the speed for the net w-hrAb.
However, it can also be argued that if one is not limited to 60 Hz as an internal
working frequency, these extra weights should be minimal.
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.. The other outstanding technology problem with flywheels is strength of material.
Flywheel energy storage is directly proportional to the working tensile stress and to
the total volume of material so stressed. All other things being equal, the cost of a
material rises sharply with usable working stress; while the cost of the support system
varies with total system volume.

Conventional wisdom tends to overlook the support cost; the conventional figure
of merit for flywheel materials is a strength to density ratio. Certainly if stainless steel
and Kevlar have comparable strength and cost per pound, and the latter has one sixth
the weight of the former, for a given energy storage a Kevlar wheel is not only lighter
but cheaper. However, E-glass has a strength only slightly less, and a density only
somewhat greater, than Kevlar; but it is an order of magnitude cheaper. It is the cur-
rent material of choice for flywheel power peaking, provided cyclic fatigue failure can
be controlled.

Thus three factors limit the potential usefulness of flywheels for energy storage:

. Cost.

" Weight.

. * Technology.

In terrestrial applications, cost is the most important consideration. In this connec-
tion, the cost of coping with the engineering constraints, including getting power into
and out of the flywheel, can easily overwhelm the cost of the flywheel itself. In orbit,
weight takes the place of money.3

Table 1 lists some possible flywheel energy storage applications, together with esti-
mates of the energy storage and weight required. (Applications requiring frictionless
bearings' are omitted.) Except for the first entry, the specific energy tabulated implies
the use of "high strength" materials in the flywheel. These include

J Steel (e.g. piano wire or stainless steel spring wire)

* E-glass or S-glass fiber

9 Kevlar

* * Graphite fiber

Each of these materials has a tabulated tensile strength as high as 500,000 psi; each
has a production strength of about 350,000 psi, of which at most about 200,000 psi is
usable as static working stress. Typical vendor data tabulates only the highest strength

A on this list when making global comparisons 4 between materials. A typical example is
0

3 The monetary equivalent of weight could be obtained by prorating the entire cost of
the mission or missions required to assemble an entire system in orbit.

. Extensive statistical data related to the strength of newer materials is difficult to
.. acquire. Extensive histograms, based on hundreds or thousands of individual stress
. tests from commercial melts are available for many alloys in the Metals Handbook.

.'-2-
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TABLE 1

Energy and Weight Allocations

Application Energy Weight Watt-hrs
Storage per pound

2 kW motor 10 kW for 25 lbs 1 to 2
generator set 15 seconds to

K.:.. start motors.

Automotive 50 kW for 10% of 2 tons 12.5
* engine size 6 minutes vehicle weight.

reduction

Trailer Truck 300m hill 2% of 50 ton 21
hill braking vehicle weight
and climbing

Commercial 150 kW for 5000 lb 23
TV transmitter 45 min
in orbit*

*The storage time through shadow is nearly independent of altitude
from low through synchronous orbit. However, the time between shadows
varies from 45 minutes just outside the atmosphere to several months
at 24 hour orbit.

the comparison of specific tensile strength and tensile stiffness for the materials in the
list above, published by Dupont in 1977, reproduced here as Figure (1). If T./p*
is the specific tensile strength in inches (as in the Figure), then one formula for the

I-" .ideal specific energy storage E/m of a rotor built to operate at that stress level is

E/m = T,,./64000p* (1)

where E/m is measured in W-hr per pound of material (see Appendix A.3). On the
•* basis of this formula and the Figure one would expect energy storage ranging from 30

W-hr/lb for steel up to 160 w-hr/Ib for Kevlar.

However, on the basis of the more realistic 200,000 psi useful working stress, the
data translates into flywheel E/m ranging from 12 W-hr/lb for steel to 65 W-hr/lb
for Kevlar. In fact, flywheels have been demonstrated in steel at 3 W-hr/lb; but have

" had problems reaching 20 W-hr/lb with Kevlar composites. This indicates the diffi-
culty of actually using materials (with real-world stress concentrations, stress cycling,
and safety factors) within a factor of three of a repeated stress of 200,000 psi. If
design for 10? cycles of loading and unloading is required, it is found in Section 3.3
that 100,000 psi is a more realistic repeated maximum.

Another major problem is the diversity of design technology in the flywheel sup-
port subsystems. The tendency has been to regard each of the following as a separate
design problem:

-- 3-
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* .i. • Power conditioning.

* Flywheel drive and power takeoff.

* Flywheel suspension.

- Structural vibrational control.

* Flywheel rotor design.

Each of these engineering designs tends to acquire a life of its own. The result is a
total cost in one studys which is roughly five times the cost of the flywheel rotor
Even in space, where component dollar cost is not the primary issue, the complication

" of five engineering enterprises to make one component work detracts from the credi-
bility of the technology. To make the flywheel cost-effective on the ground and cred-
ible in space it will be necessary to combine several of these problems so that the cost
and apparent system complexity will collapse also.

The introduction of the concept of a limp, fluid-filled flywheel does not by itself
solve any of these problems. What it does do is to replace the concept of a rigid
wheel restrained by a six axis support system with external drive and sensitivity to a
host of vibrational instabilities. The substitute is a floppy structure that seeks its own
equilibrium shape at speed and which is so weakly coupled to the outside world that
integral design of the wheel, drive, and support systems becomes almost a necessity.

A further advantage is that the wheel can be run (for a given stored energy) at
modest speed heavily loaded with liquid, so that the only structures close to ultimate
design stress are the reinforcing fibers in the containment structure. Then, by off-load-
ing liquid, the same wheel can be operated at progressively higher speeds at the same
energy. This process allows isolation and correction of the (inevitable) design defi-
ciencies one by one in the same model.

In principle, energy can be exchanged with the flywheel by pumping fluid in and

out of the spinning structure. Indeed, if excess fluid can be introduced as the wheel
slows down, it is possible to run it at constant stress and avoid the problems of fatigue
under cyclic loadingl

The objective of this paper is to use the concept of the limp flywheel as much to
identify problems as to solve them. Indeed, engineering designs, even "on the back of
an envelope', are beyond the scope of this effort. In what follows, the concept of the
limp flywheel is used to a review a number of issues of support stability, energy
exchange, and electromagnetic interactions. Various strength issues are also addressed,
including the role of fibers and matrix, fiber and flywheel geometry, stress transfer,
and fatigue failure, as well as the idiosyncracies of some fiber materials.

0

' "A Flywheel Energy Storage and Conversion System for P2iotovoltaic Applications -
Final Report" by Philip Jarvinen, March 1882, DOE/ET/20279-159
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Chapter 2

THE FLUID LOADED LIMP FL YWHEEL

What is suggested here is the use of a new kind of "composite' flywheel in which
the strength is supplied by filaments of a high strength material, and in which the mass
is, at least conceptually, a liquid. The obvious analogy is the automobile tire, in
which the strength comes from radial or circumferential belts, while the main mass is
in the rubber.' The division of the tasks of strength and mass between separate
materials reduces the nominal specific energy storage of the material used. But this is
traded off for a greater design certainty about what happens, in both the practical and
theoretical senses. As a result, the net specific energy of an actual rotor may be higher
on the basis of a non-rigid design (with separation of function) than for the same
material used for both functions in a rigid rotor.

Our objective is to establish that such a flywheel system is both plausible and
potentially advantageous. Such discussions fall naturally into three categories

1. Stability.

2. System implications.

3. Rotor support.

4. Strength of materials.

In each case, primary reliance will be placed on physical analogy. Analysis will

either be omitted or used only as an illustration.

6 The analogy is closer than one might at first imagine. At low mechanical frequen-
cies, the properties of rubber are those of a high molecular weight liquid (Poisson's
ratio is 0.5) which happens to have a small residual d.c. stiffness in addition to vis-
cosity. Moreover, material similar to Kevlar (aramid fibers) is used for reinforce-
ment in the higher grades of tires (as are glass and steel!). The reader should note
that truck tires, when they overheat, fracture radially just as composite flywheel
rotors do. Here the analogy comes to an end; the liquid mass is postulated within
the tube in the position of the tire air, rather than as an external application like the
wearing surface of the tire.

* -7-
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2.1 STABILITY

Stability considerations come in two flavors: those related to the gross stability of the
mechanical arrangement being considered, and those related to control of incidental
mechanical resonances.

2.1.1 Gross Stability

The gross stability question is simple: does a rotating flexible tube (such as a tire)
tend to a toroidal shape or does it tend catastrophically to a collapsed or distended
shape? A related question is, if a tire is partly filled with a liquid such as water, does
the (inside) free surface of the liquid tend to lie smoothly at a uniform radius, or does
it tend to form ripples and lump up? The answers from experience are favorable.

LEATHER
BRAKE
BAND :.

:STEAM.

SHAFT WATER
BOILING
INSIDE

HOLLOW
PULLEY

(a) Lariat (b) Prony Brake

Figure 2: Stable Whirling Systems

The loop of a lariat is a whirling system which is statically limp. Dynamically, it
arranges itself into a circle. While this fact does not prove that a circle will result
with some other form of support than the slightly eccentric out-of-plane rope to the
hand, the example makes the circular equilibrium shape at least plausible. (See Fig-
ure (2).)

The quiescence of the inside surface of a liquid within a whirling tube is estab-
lished by the behavior of water in the Prony Brake, also shown schematically in Fig-
ure (2). This is a device used to load and measure the power output of rotating
machinery. The friction of the brake is supplied by a leather strap which slips on a
rotating pulley. The pulley is hollow; it is filled with water which boils to dissipate
the heat generated by friction. The observation is that the water distributes itself uni-
formly around the inside periphery when the pulley speed is high enough to cause cen-

-8-
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trifugal acceleration to exceed that of gravity. 7

This result can be justified by elementary analysis. The velocity c of a gravity
wave is known to be given by the formulas

c2 K gx/21T (2)

where equality holds only in the limit in which the depth of the liquid becomes com-
parable with a wavelength x of the (assumed sinusoidally time dependent) disturbance,
and g is the local acceleration normal to the surface. The normal acceleration of a
free surface rotating at radius R and at angular frequency 0 is

g = RO 2  (3)

Now suppose a stable disturbance of the liquid, so that x is 2ITR/N, N an integer
Combining the two previous equations then yields

c 0 R/N (4)

But OR is simply the peripheral speed of the liquid surface. It follows from this that
- "the resonances of the surface waves at the free surface always occur at frequencies
. below the spin frequency of the rotor. If the liquid surface is stable at one speed for

which centrifugal accelerations dominate wave motion, it will be stable at all such
spees.

2.1.2 Resonances

All mechanical systems have resonances, often with high Q's. In the vicinity of a
high-Q resonance stray parameters can cause dynamic instablities in an otherwise sta-
ble configuration. This can happen either as a result of amplification of motion to the
point where neglected finite amplitude effects take over, or by providing coupling
between parts of the system that were assumed not to be coupled.

7 Colleague Richard Sullivan (private communication) also points out that when a
-@ toroidal fuel tank is spun up in a 0-g environment, the liquid contents is initially a

cloud of droplets; above a certain rotation rate, the liquid transforms from a droplet
cloud to a stable belt hugging the outer perimeter of the tank. He also character-
izes the resulting spun system as "self-stabilizing' (albeit the spin rates for his tests
were much lower than those considered here).

* ' This formula is for a standard infinitesimal amplitude gravity wave on at the
boundary of a half space, in which the wave motion is pure potential flow (no rota-
tion). For a finite depth h, the formula for c2 becomes kg coth(kh), where k is 211A.
There is another type of gravity wave, the Goerstner wave, with purely rotational
finite amplitude flow, having the same wave-speed formula. See Lamb, Hydrody-
namics, 6th Edition, Dover, 1945, Sect 221. Evidently, a combination of the two

@ wave types, with the usual modifications in radial dependence from exponential to
modified Bessel functions, should be able to satisfy boundary conditions on a rotat-
ing free circular cylinder surface.

-9-
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The cures are threefold:

* Design to avoid unstable structural resonance or coupling.

* Move structural resonances outside the frequency range of the spinning rotor, so
that only asymptotic effects of such resonances need be considered.

• Thoroughly damp any resonances remaining within the range.

The most powerful methods of investigating stability of resonance and coupling
include a consideration of the non-resonant wavespeeds of the modes being considered:

* If the square of the wavespeed is negative, the mode is unstable.

* If two modes are coupled, energy will flow from the mode with the higher
wavespeed to the one with the lower wavespeed.

* Coupled modes never cross wavespeeds; instead each mode changes type, with a
maximum or minimum in wavespeed at the nominal crossing point.

An example of negative square wavespeed is provided by the "gravity wave' on the
_ outer surface of a rotating fluid cylinder. If the negative spring constant of the

acceleration is not overcome by the stiffness of the stretched string constraint (which
nominally holds the fluid in place), there can be at least one dynamically unstable
mode of the outer surface of the flywheel.

Resonances may be moved outside the spin rate range either by making structure
very stiff, so that mechanical resonances lie above the spin rate; or by making struc-
ture very floppy, so that resonances lie below the spin rate. The prototype flywheel
reported by Jarvinen' rotated in the range between 100 and 200 Hz. Reaching E/m of
25 W-hr/lb will require faster wheels, moving at up to 1000 Hz. It becomes very dif-
ficult to prevent structural resonances in massive bodies and support systems as the
frequency rises to such values.

Jarvinen' and Millner 9 reported steps towards alleviating such problems by moving
a major resonance, the primary resonance of the suspension system, below the operat-
ing frequency range by the use of active magnetic bearings. The present proposal takes
this philosophy one step further, by reducing static stiffness to a perturbation on a sys-
tem whose resonances are almost entirely due to dynamic forces, such as the "gravity"
wave just treated or the violin string modes of stretched filaments. Since these forces
are determined in turn by the spin rate, the result is a resonance pattern which tends
to track the spin rate. The design which is satisfactory at one speed should work over
a wide range of speeds.

Evidently, a flywheel rotating with peripheral speed OR can couple energy (for
0 example, by hysteresis) into any lower speed peripheral mode, which could result in

excitation of subharmonic modes; however, such modes are elastically 'floppy" and
thus are easy to damp. An advantage of the liquid model of the flywheel is that the
identification of such modes is simplified by unidirectional principal stiffness of the

' "Flywheel Components for Satellite Applications" by Alan Millner, MIT Lincoln
Laboratory Technical Note 1978-4, 16 May, 1978

-10-
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constraints.

2.2 SYSTEM IMPLICATIONS

Specific advantages of the liquid (or statically floppy) model are

* The containment of high pressure fluids by uniaxial stress members is well
understood in the design of pressure vessels.

* Safety against overspin can be obtained by venting fluid at overpressure. As a
consequence, the loaded container can be operated much closer to its stress limit
than would be the case if the empty container were spinning at a rate that might
cause it to come apart.

Some materials, such as lead, are stiffish at room temperature unstressed, but will
tend to behave as viscous liquids at the centrifugal accelerations met in the flywheel.
If the fluid is more conventional, so as to have low viscosity under all conditions, fur-
ther simplifications and combinations of function are possible:

a) Exchange of liquid with a reservoir, or recirculation of liquid can be used as
the means of delivering and extracting energy.

1. The flywheel can now exchange energy by both speed change and mass
change. In some combination, this means that the speed of the wheel can
be steadier for the same energy change, or the depth of energy extraction
can be greater for the same speed change.

2. The pump or pumps which connect with the flywheel can be placed line
with the normal power train of the equipment being served, with no need
for alignment with the axis of the flywheel.

3. The use of efficient multistage turbine pumps eliminates the need for the
turbine and the power train to turn at compatible shaft speeds.

b) The rotating joint through which the fluid flows can be designed as a thrust
bearing to bear part of, or all, of the weight of the rotor.

c) Shock overloads (perhaps due to catastrophe elsewhere in the power train) on
-. the rotating fluid need not result in shock overloads on the containment sys-

ten, and vice versa. Indeed, through the operation of overload relief valves,
the shock may never reach the flywheel.

S..

In the last sense, the liquid system may be superior to an electrical system, in
which it is very difficult to prevent a momentary short circuit from affecting the drive
motor-generator. 10

10 An important diffe-ence between the two systems is that the fluid flow equations
are inherently non-linear in the practical flow regime, while the electrical equa-
tions are inherently linear. While the relief valve has its analog in the Zener diode,

there is no useful electrical equivalent of a metering constriction in a pipe. In con-

• -I1-

0



For some applications direct electric drive connection to the rotating fluid is nec-
essary or desirable. In this connection, the peripheral speeds of the liquid are high
enough (over 500 m/s for a specific energy storage in excess of 10 W-hr/lb) that all
liquid metals are good enough conductors for efficient coupling even at modest (3000
gauss) magnetic field densities. Moreover, there is nothing to prevent a part of the
'liquid' from being otherwise loose insulated copper wires suitably wound and sup-
ported by bands of high strength non-conductor such as Kevlar.

2.3 ROTOR SUPPORT

' Most flywheels are either directly supported by conventional bearings (as is the case
for the flywheel of the conventional automobile engine) or have a secondary support
system that takes over as the rotor comes up to speed. For reasons which are not
entirely clear to the writer, the secondary support systems are merely at-speed versions
of concepts that could be engineered to be stable at all speeds. They are not what is
suggested here, a secondary support system that is dynamically stable even if it is stat-
ically unstable. The advantage of such systems is that they can be simple.

The example of the lariat is once again suggestive. Not only does the lariat take
the form of a circle as its loop is brought up to speed; it rises to a position over the
performer's head. By moving his position (and that of his arm) the performer can
actually throw the rotating loop as if it were a solid hoop. Thus, not only does a
small centripetal unbalance levitate the loop; there is sufficient weakness in the
coupling between the loop and the constraint (the rest of the rope) to allow some
motion as independent structures.

The author does not have the background in mechanical or aeronautical engineer-
ing to suggest dynamically stable support systems from these arts. However, electro-
magnetic systems can be dynamically stable. Now, there is a provable theorem in
magnetostatics (Ernshaw's theorem) that there are no stable equilibria. However, this
theorem depends on subtle assumptions about the environment in which it applies. A
system with diamagnetism, either real or effective, can exhibit stable static magnetic
equilibria.

Everyone is familiar with the unity diamagnetic susceptibility of a superconductor;
and the demonstration in which a small magnet will float within a superconducting
bowl, keeping to the center. Some years ago, the writer and Bradford Howland
mounted an office wall magnet on a cork and floated the combination (magnet down)
in a water glass full of a saturated ferric sulphate solution. The latter is significantly
paramagnetic; the surroundings were diamagnetic by comparison. The magnet posi-
tioned itself stably on the central axis of the glass.

All conductors are dynamically diamagnetic. In a supercoiductor, the dynamic
condition is metastable; in an ordinary conductor it must be constantly re-established
by the use of alternating fields. A closer analysis shows that the current induced in a

sequence, it turns out to be impractical to provide overload fault protection
between the generators in a central station power plant and the low voltage bus-
bars in the switchyard. A short will either burn free or irreversibly damage the
machinery before circuit breakers could act.

- 12 -
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conductor by an alternating field exerts a reaction force only to the extent that it is
out of phase with the induced electric field. It follows that the alternating magnetic
field will tend to repel conductors in its vicinity if

a) the electrical skin depth in the conductor is thin compared with its actual
depth, or

b) the induced voltages cause currents to flow around a circuit whose admittance
is primarily inductive.

Repulsion (and, ultimately, levitation) by skin effect is not an efficient process. The
in-phase and reactive components of the net current are equal; the in-phase current
results in loss without first order force. The second alternative, in which the current is
constrained to flow around a mainly inductive path, is efficient.

Except when deliberately designed and operated otherwise, the circuits of rotating
machinery tend to be inductive. The minimization of such effects, referred to as "con-
trolling armature reaction" is one of the objectives of normal machinery design. Use of
the inductive current for levitation requires two changes from ordinary rotating
machinery design:

a) A magnetic circuit design change in the armature, to facilitate rather than to
discourage flux paths through the pole pieces when there is a flow of armature
current, and

b) The elimination of magnetically soft materials. (A series motor would tend to
expel its rotor if it were not for the overwhelming attractive forces in the iron.)

The two design changes are mutually consistent; both are made possible by the avail-
ability of high-energy product permanent magnet materials to replace 'field coils' on
either rotor or stator (but not both at once).

If 50 kg of a 200 kg rotor is devoted to copper in a configuration in which the
field is 3300 Gauss and the flywheel has a 2m circumference, then a current of about
3000 amps in the copper can support the flywheel for a power loss of about 100 W."
and so-called armature reaction from the motor-generator will keep it centered radi-
ally.

The practical device which demonstrates these effects bears little relationship to a
flywheel. It is the constant current transformer that was used in series street lighting
circuits until fairly recently. A sketch of such a transformer is shown in Figure (3).
This is a variable reluctance device in which control over the output voltage appears
in the equivalent circuit as a rms-current dependent leakage inductance. The constant
voltage input winding is at the bottom. An unusually long E-core extends upward,
resulting in substantial leakage flux between the central tine of the E and its sides. As
a result, the flux in the central tine decreases upwards. A partly counterweighted

50 kg is roughly 1/180 m3 of copper. A 2-m length therefore has a cross- section

of 1/360 ml and a resistance of 1.2x10 - 0. A current of 3000 amps through 2 m at
0.33 mks flux density units produces a force of 2000 newtons, which will I vitate
200 kg. This same current through the above resistance produces an PR loss of
110 Watts.
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Figure 3: Constant Current Series Lighting Circuit Transformer

output coil floats in the leakage field, levitated by the current through it as a result of
the action of the induced voltage on the external resistive load. If the rms current tend
to go up (for whatever reason) the coil rises on account of the increased force; in

-, consequence, there is less flux density through its center from the tine and the voltage
drops to tend to re-establish an equilibrium current.
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Chapter 3

STRENG TH CONSIDERA TIONS

It is possible to postulate a limp flywheel constraint system made entirely out of cloth,
* - treated with some kind of waterproofing material to keep the fluid from oozing

through the pores in the cloth under high pressure. This is indeed the ideal for which
one strives. However, the addition of the "waterproofing' produces a composite
material system which may itself cause stress or ooze, or worse, redistribute stresses in
such a way as to initiate progressive catastrophic overloading of the nain load bearing
fibers.

The fact that the limp flywheel adjusts its shape under load avoids some of the
possible difficulties. Nevertheless there are some combinations of high strength fibers
and matrix materials whose properties are ill-suited to formulation of composites for
the flywheel application. For conventional designs, these include low shear strength of
bonds to the matrix and non-compatibility of thermal expansion coefficients. One res-
olution is to avoid fiber materials entirely, and to use a solid rotor. This was the 'low
technology" route taken by Jarvinen et all However, this road appears to be a dead
end. The strongest materials are those which have been drawn as fibers in the direc-
tion of the maximum working stress, or which have been grown as uniaxial single
crystal whiskers. Ultimately, to make flywheels competitive with batteries in cost and
weight, these fiber materials must be used. This means identifying, and where neces-
sary synthesizing, combinations of material properties that will work reliably at high
stress and strain as fiber composites.

The investigations of this section include several departures from conventional wis-
dom. The limp flywheel structure is inherently one that lacks shear stresses, at least
to the first order in small quantities. The matrix has only two functions, to distribute
the compressive load of the fluid onto the fibers, and to hold the fibers in place apart
from one another. If the function of lubrication (which is part of holding fibers in
place) is omitted, then it can be argued that the matrix isn't necessary at all so long as
there is a gasket to prevent the fluid from working through the interstices. Indeed,
experiments with glass fiber wraps on pressure bottles support just such a conclusion.
However, the matrix can prevent the fibers from cutting one another where they cross;
and can hold a loose fiber in place if it snaps prematurely. If the strength of matrix-
fiber bonds, and resistance to delamination by longitudinal shear are no longer impor-
tant in the limp structure, it is important that the matrix resist liquefaction under pres-
sure. Ideally, the matrix material should stiffen as the compressive or tensile strain
upon it increases.

Just as the matrix is not called upon to resist major tension or shear, the loaded
fibers do not need to sustain column compression.' 2 In this context, the flexure and

12 It can be argued that shrinkage of the matrix during cure will put the fiber rein-
forcement under compression. To the extent that this is true, the composite must
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rotating beam types of stress cycling tests are are too severe, since they subject the
fibers to equal compressive and tensile loads. Ideally, the fiber should fail in tension
with plastic flow, rather than to snap at a conchoidal fracture in shear. Some plastic
flow before breaking permits the wheel to fail gracefully with an initial give before it
ruptures.

It is regrettable that for most materials processing for high strength reduces the
region of plastic flow, or eliminates it entirely. It is even more regrettable that in most
cases the stress that can be sustained on repeated cycling between high an low levels is
a modest fraction, 30% is typical for 101 cycles, of the loading that the material can
take once or twice. For materials such as glass fiber, which is subject to water vapor
corrosion and to mechanical damage by rubbing, the loss in strength on cycling can
be much higher unless the surface treatments in manufacture and the matrix are prop-
erly chosen.

Calculation reveals that a limp flywheel whose fibers are radial loops (beginning
and ending at the axle and extending in a plane through the axle) is as efficient in
energy to mass ratio as if the fibers were radial spokes restraining the same rim load.
This calculation applies to the case when the mass of fluid loading in the rim is large
compared with the mass of fiber. Other cases, including toroidal or helical windings,
not considered here.

3.1 REINFORCED SOLIDS

.. -i ~ZONE OF : ;,:

BEAM IN
COMPRESSION LINE OF DEMARKATION

STEEL ROD IN TENSION

Figure 4: Reinforced Concrete Section

Figure (4) shows the design of a typical reinforced concrete beam, near its center.
Concrete has strength in compression and shear, but almost no strength in tension.
Since a tensile stress generally appears at 45" to the direction of an applied shear, the

be able to withstand statically any tendency of the matrix to peel away from the
fibers which hold it extended to its pre-cure length.
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shear strength (50% of the compressive strength) is mostly unusable. Compressive
strength depends on the amount of water used in mixing and ranges from 1000 to 4000
psi, almost in inverse proportion to the amount of water.

Steel bars imbedded in the concrete are used to shoulder the tensile loads. The
scheme works because

a) The steel is much stiffer than the concrete.

b) The stiffness of the concrete and its compressive strength are proportional to

one another.

c) Steel and stone have comparable thermal expansion coefficients.

In the design of reinforced concrete it is conventional to assume that the entire
compressive load is borne by the concrete; the entire tensile load by the steel. The
existence of concrete beyond the outermost layer of steel is largerly a matter of envi-
ronmental protection; building codes typically require a thickness of concrete cladding
determined entirely by fire resistance considerations.

The 'balanced" approach to the design of reinforced concrete is to select the
amount of steel so that roughly the same cross section is under compression as in the
case of a strong homogenous beam. If the concrete cures stiffer than planned, the line
of demarcation between tension and compression will move away from the steel so as
to reduce the area of concrete available to resist the compressive load; but the remain-
ing concrete is also stronger than planned and will so be able to accept the increased
loading. Similarly, if the concrete is somewhat weaker than planned, the demarcation
will shift to put more of the concrete under compression, and so to spread out the
load.

In this connection, concrete exhibits a remarkable property: its stiffness (Young's
modulus) Y and its strength T€ are proportional.

Y = 1000T e  (5)

* .. Now, the bond between reinforcement and matrix is mechanical, not chemical. All
except the thinnest (1/4') re-bar is made with a dimpled surface to improve the bond.
If there is doubt about the bond, e.g. if the bar is short, the ends of the reinforcement
are bent to form hooks. The integrity of the bond is aided by the compatibility of the

0- thermal expansion of concrete and steel: the bond does not tend to work free with
temperature cycling.13

All elements of a fiber reinforced composite must be capable of the same strain
along the fiber direction; the composite can be no stronger than the most fragile com-
ponent in strain. Formula (5) above indicates that the concrete can sustain a

13 However, if moisture gets into the contact between bar and matrix, alternate freez-
ing an thawing can destroy the bond. The high thermal conductivity of the steel is
a disadvantage in this process, in that it provides a high conductance path to an

O. infinite thermal reservoir for the freeze-cycling of small pockets. This is a partic-
ular problem with reinforced steel highway bridges, where occasional stress over-
loading of the concrete can produce cracks which are pathways for the water.
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maximum strain of roughly 0.1%. In 'balanced' construction, this limits the tensile
stress in the steel to 0.1% of its elastic modulus, or 30,000 psi. (Construction codes
generally reduce this to 15,000 psi or even 10,000 psi for safety). There is no point in
attempting to use a high strength steel in such an application.

All high strength materials (tensile strength over 300,000 psi) attain that strength
by virtue of being

9 stiff, and

9 able to withstand repeated cycling to several percent strain.

The reinforced concrete analogy makes it clear that such properties are wasted in a
composite if the matrix cannot by itself withstand even greater strain. The need to
withstend greater strain is especially critical at the ends of the fibers, or at points
where one of the fibers fails. The unloading of the fiber at its end results in strain

. concentrations in the adjacent matrix, since such a loose end cannot be bent to form a
hook as in concrete. The exact increase is difficult to calculate; for an isolated fiber
in an otherwise homogenous matrix, it is typically a factor of four.

There are thus two possibilities for the matrix material for a truly high strength
*i composite:

1. The matrix can be non-crystalline and rubbery. It stretches but does not fail,
by fatigue or otherwise, at several percent strain.

2. The matrix can be a ductile crystalline material with a recrystallization temp-
erature below operating (room) temperature. It experiences plastic flow every

- time there is a major change in the state of the wheel, but spontaneously
anneals each time.

In either case the matrix material must have a finite strain threshold (greater than a
few percent) below which the material exhibits a minimum long term shear strength of
at least a few thousand psi (the typical bond strength of interfaces between matrix and

* "- fiber). A closely woven fabric impregnated with such a material can withstand roughly
as much pressure (in units of such shear strength) as there are layers of material.

A non-trivial example of the first class of materials is "rubber" itself, the kind used
in bonding abrasive cutting wheels or automobile tires. Here, the matrix is itself a
composite of an organic and colloidal carbon (lampblack), the latter being as much
as 30% by weight of the matrix. There is a broadly based industrial technology for
handling such materials and bonding fibers with them. There is even a non-destruc-
tive process for estimating the pressure that a bonded welt will withstand: the pressure
required to force the material into the welt in manufacture at a temperature well
above that at which it will operate. A practical difficulty is that many rubbers have
relatively low extrusion pressures (2000 psi).

Rubberlike materials have another important property. At large strain the sample
tends to stiffen reversibly, rather than to yield and weaken (as does a ductile material).
Thus it eventually snaps in brittle fracture rather than to pull like taffy as does a
metal. Other materials which behave like rubber are wool and, to some extent, rayon
and silk. The increasing stiffness is especially important to the problem of confining
the strain effect of a fiber break.

-18 -
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The second class of materials includes zinc, tin, indium, and (unalloyed) gold.
The recrystallization temperature of zinc is too close to room temperature (70 F) to
result in a useful matrix. (Zinc is stiff, L.5x101 psi, and strong, 3x10 psi, short term
but flabby, (10' psi, and weak, (6000 psi, long term). Tin and indium both give off an
audible "cry" when bent, the noise being caused by dimensional rearrangements that
accompany recrystallization. Tin wets iron alloys (as in the 'tin can"); it has a
Young's modulus of 10' psi and a yield strength of 5000 psi. If used as a matrix,
every change in flywheel speed will be accompanied by plastic flow of the tin; a liner
may be needed between the welt and the flywheel liquid to prevent radial extrusion of
the tin during these changes. Although, in principle tin could be soaked up by a dry
welt while the former is in a molten state, the better method is probably impregnation
under pressure and sintering, as with rubber, just below its melting point. In this con-
nection, the admixture of colloidal alumina (or silica) with the tin by powder metal-
lurgy prior to impregnation will strengthen the matrix and raise the pressure for
impregnation.

A final strength consideration is the strain-induced temperature change in the high
strength material. Part of the change is a rise due to hysteresis. This is assumed small,
lest the material itself fall prey to fatigue failure.

There is also an elastic effect, due to the difference between adiabatic and isother-
mal coefficients of response to changes, elastic or thermal. For materials with a high
volume expansion coefficient with temperature, such as zinc, tin, and Kevlar (the lat-
ter, 105 ppmC) and high bulk modulus, the difference between the adiabatic and
isothermal elastic constants is as as much as 10% of either. By analogy with pulling
the piston of a cylinder full of gas, the stretching of such a material tends to cause a
temperature drop. 4 However, the situation is complicated by the fact the many fibers
have unusually low, even negative, thermal expansion coefficients along their fiber
axis. (Such fibers include graphite and Kevlar).

Materials like tin would be used only in a matrix; the elastic energy stored or dis-
sipated as heat is a small fraction of that stored (at the same strainl) in the fibers. At
200,000 psi, the adiabatic temperature change in Kevlar is about 5C; this is not quite
inconsequential, but it is not necessarily a major effect. Other high strength materials
have bulk expansion modulus 8 substantially smaller than that of Kevlar (the effect is
proportional to 82); the temperature change is an order of magnitude less in these
materials.

0

a-,

14 See, for example the AlP Handbook, 3rd Ed. Section 3f-3, American Institute of
Physics, New York, 1972

-19-

*



"K

3.2 FIBER FORCES TO CONTAIN FLUID PRESSURE

FORCE F IN FIBER
RADIAL PER UNIT WIDTH ON PAPER
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AXLE AXLE

(a)Radial Model (b)Belt Model

Figure 5: Stress and Pressure

There are two basic geometries for restraining the mass of a centrifuge, called here
the "radial restraint" and the 'belt restraint". See Figure (1). In either case, the fluid
mass exerts a pressure P against the restraint, to be offset by a surface force F (per
unit length of surface perpendicular to its direction) along the surface. F is numeri-
cally proportional to P and to the total local curvature l/r*:

P = F/r* (6)

Referring to Figure (5.a), there are two principal components to the curvature. The
radius of rotation R about the central axis (in a plane perpendicular to that axis), and

- the local radius of curvature r of the flywheel cross section in a plane which contains
the central axis

. l/r* = l/R + l/r (7)

For the radial constraint, the term l/r is dominant; for the belt, I/R.

Suppose that the average thickness of the fiber layer is ER for the belt; and a for
* the radial, where a is the smallest value of r. Suppose further that we consider only

the dominant constraint in each case. Then the fiber stress T is F/Ea for the radial
case, and F/R for the belt. Since T is a given design constraint it follows that P for
either case is given by

P ET (8)

, Thus, by keeping E small, the stress in the fluid may be kept small compared with the
fiber stress. This is important, because the fiber stress model will work only if the

-20

,'. ....



. . ..

6-j

stresses elsewhere are well within the elastic limits of secondary structural materials
elsewhere. At 200,000 psi for T, a modest 0.1 for E nevertheless implies fluid stress at
a substantial 20,000 psi, well beyond the plastic limits of many materials.

Of course, the nominal configurations shown in Figure (5) are idealized. If the-,.-.belt is not also curved (or some similar constraint supplied) in plane which contains

the axis of rotation, the fluid will simply slip out the open ends of the cylinder which
. contains" it. If the radial ply is not supplemented by some kind of belt, the fluid will

simply push adjoining loops aside and spew out between them. Thus the actual
"winding' of a reinforcement takes the form of a helical twinding around a clcsed cir-
cular axis; if the direction of the turns is mainly radial, we call this radial reinforce-
ment; if mainly, circumferential, belt reinforcement.

3.2.1 Flywheel Volume
-'

Appendix (A.2) shows that to hold a mass m by a belt or spokes so as to store energy
E at fiber stress T requires a volume V of belt or spoke. Since the pressure is related
to the allowable fiber stress by a geometric factor, the pressure indirectly determines
the volume of the flywheel. For some applications, including spacecraft, this volume is
important because of limits on physical space as well as limits on weight or cost.

In the case of the belt constraint, all of the fiber is contained within a cylindric
shell whose thickness is ER. By scaling, it follows that the total volume of the hollow
cylinder enclosed by the belt is V

V = E/eT = E/P (9)

In the case of the radial constraint, the initial thickness of the top (or bottom) of
the hollow pancake is Ea, where a is the radius of curvature of the tip of the pancake.
The thickness of the covers of the pancake must grow as one moves in towards the
axis, in order to maintain the total cross section carrying stress. The volume of two
such covers is 4T aR .

In Section 3.2.2.2 below, formulas are given from which a (r. in the notation of
that section) can be calculated in terms of the separation 2x. of the covers. For an

otherwise "optimum" design, the covers are separated by roughly 2.45a. Assuming thin
0 _covers, the hollow volume is thus 2.45Tr Rla. Scaling then gives the nominal flywheel
2% volume in terms of E and P as

V. = 1.22E/T = 1.22E/P (10)

'. The radially reinforced wheel is nominally larger, but not much larger, than the belt
*• reinforced one.
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3.2.2 Equilibrium Shape of Radial Ply

In this section we describe the equilibrium shape of a radial reinforcement fiber.
There are two cases: the constant cross-section fiber non-uniformly stressed along its
length by the centrifugal accelerations acting on its own mass, and the fiber under
constant stress which restrains a liquid under pressure.

.4."

x

2Xo ,

I

'?" Figure 6: Geometry of Radial Reinforcement Fiber

The general geometry of Figure (6) is applicable to both cases. In the former
case, the x-axis is the radius of rotation; the fiber is attached so as to make an angle
0o with it. In the latter case, the x-axis coincides with the free surface of the liquid;
the filament continues past it in a straight line with fiber stress T per unit length nor-
mal to the plane of the diagram. (Note that in our notation dy/dx is cote, rather than

.4' tan0.)

In both cases, r0 is the radius of curvature at the outer tip edge of the rotating
containment. For the free fiber, the distance Yo is identical to the radius R of the fly-
wheel; for the case of liquid containment, y0 is the radial depth of the liquid.

* Both cases lead to second order differential equations whose ultimate solutions are
part of the theory of elliptic functions. Indeed, one (admitedly flip) writer introduces
the first problem v -" the remark, 'The following problem I am working, not becauseI

* thecurveof any practical i. rtance, but because it affords a mechanical means of generating

4,, "5 "'he Elliptic Functions As They Should Be" by Albert Eagle, Galloway and Por-

? ter, Cambridge England, 1958 (§ 11.17-18).
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3.2.2.1 Self Loaded Uniform Radial Loop

The differential equation for the first case is derived from the fact that the accelera-
tions (gravity and other structure neglected) are entirely radial; hence the x-component
of the force directed along the fiber must be constant. The resulting differential equa-
tion relates the angle 0 at any point to the local radius of curvature r.

d cot0/dx = -y r/ro (11)

by various substitutions, this can be integrated once. The next stage of integration
leads to elliptic integrals and to the conclusion that

y/xo = (iT/K2(l-k)) Sn(k,ffx/2xo) (12)

The integration (discussed in Appendix (A5.2. 1)) leads to a number of results, includ-
ing formulas for the length L of the fiber in terms of complete elliptic integrals, and a
variety of relationships between the elliptic parameter k and the initial angle 0. For
k--0, the Sn curve is a sine curve. As k increase to unity, the curve becomes progres-
sively flatter, so that the particular value of k must be deduced from a knowledge of
x. and either yo or the length L. As Eagle" remarks, this deduction requires the
numerical solution of a transcendental equation, for example

yo/xo= 2k/(l-k2)K(k) (13)

Once k is found, then the geometry of the Sn curve yields ratios which do not depend
on the scaling used in the definition of the elliptic function:

cot Oo 2k/(l-k2 )

y/r = 4k'/(1-k2) (14)

3.2.2.2 Fluid Loaded Radial Loop

5- The problem of describing the equilibrium shape of the radial containment fiber when
the dominant stress is that due to fluid pressure is much easier, because the differential
equation is formally equivalent to that of a thin stiff wire or bar bent to large excur-sion by forces acting along its unbent axis. The resulting shapes are studied in ele-

mentary strength of materials courses, and have been described by every classic text-
book on elasticity as "elastica'."6

The differential equation is the result of stating, on the one hand, that the fluid
pressure is in equilibrium with the (invariant) force in the fiber, and related to it by
the local radius of curvature, as above; and observing, on the other hand, that in a
layer thin compared to the overall flywheel radius R, the fluid pressure varies linearly
from zero at its free surface to a maximum at y=y.. This leads to the second order
differential equation

4

16 Eagle, loc cit § 1.19ff See also A.E.H. Love , "The Mathematical Theory of Elas-
ticity', 4th Edition of 1927, Dover Publications, New York
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y,/(l+y' 2),., =r (1 - Y/yo) (15)

where r is the ratio ydro. Integrating once (See Appendix A.5.2.2) gives an equation
for sine,:

sin 0o = i - r/2 (16)

Evidently, we want the upper and lower surfaces of the pancake to be more or less
flat, so that the fibers can be continued (eventually) past the axle without attaching
them there (so as to form by progressive winding a thin layer like the red wax coating
on an edam cheese). This requires r to be close to 2, so that 0. will be close to zero.

This choice (r=2) also leads to the minimum value of fiber stress for a given mass
of fluid (see Appendix (A.5)). With r=2 the stress in the fiber is the same as it would
be if the rim were being held by radial spokes of the same cross section. Thus, the
radial looped fiber is in fact a practical means of executing the massive-rim flywheel
with radial spoke support.

Since the parametric equations of elastica are well described in the literature, there
is no need to go over that ground here. The one necessary tie-in is the observation
that F and the elliptic parameter k are related simply by

k = f/4 (17)

The parameteric equations themselves are

y = 2k coso

x = 2E(k,o) - F(ko) (18)

where E and F are elliptic integrals, and o is the parameter. For the choice k2=1/2,
E(k,90) is 0.85 and F(k,90) is 1.35. From this, one calculates that 2x/r. is 2.45.

3.3 FIBER AND MATRIX RHEOLOGY

Most glassy or polycrystalline solids have an isotropic bulk compression modulus
* ranging from roughly 2x10' psi to 80x106 psi. The shear modulus and Young's mod-
ulus for such materials are up to a factor of two lower. When such materials fail, they
either snap while still in the linear region of the stress-strain curve (as do glass fibers);
or they give and stretch as does steel. See the curve labelled "steer' in Figure (7)17

Other materials, such as rubber and wool exhibit exactly opposite behavior; they
are easily extendible at low strain and stiffen at high strain. (On the scale of the Fig-
ure, cotton appears to be like glass; in fact, the behavior is similar to rubber and
wool, but on a different scale.) It is possible for a material to exhibit both kinds of
behavior simultaneously, the rubber type along a fiber axis, and the metal type at right

17 Taken from Sect. 41 of Elasticity, Plasticity, and Structure of Matter by R. Hou-
wink, 2nd edition, Harren Press, Washington D.C., 1953, p27 5
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Figure 8: Typical Stress-Strain for Rubber.

angles to it.

Rubbery behavior is the consequence of an unusually flaccid low frequency com-
ponent to the shear stiffness. This high compliance component can be frozen out by
lowering the temperature, or by using a measurement frequency above a few hundred

*@ Hertz, or by introducing large strain. (The material must stiffen a high compressive
strain, which, after all, cannot exceed unity.) Figure (8) shows stress-strain for a typi-
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cal rubber.13

The elastic stretching of both fibers and matrix under repeated loading and
unloading involves both long term complications and short term effects. One of the
long term complications is elastic relaxation, mentioned in connection with the elastic
properties of zinc above.
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Figure 9- Relaxation Failure

All fibrous materials are subject to a difference between the short and long term
loads that they can safely withstand. For wood, the strength ratio between a few hours
of loading (say, roof loads in a storm) and a few years of loading may be a factor of
two. Figure (9) shows a similar phenomenon with Kevlar and glass epoxy composites.
(This figure was taken from the Dupont Kevlar 49 Handbook.)

Unless there is a bad unbalance or vibration, the stresses developed in a flywheel
are static stresses so long as the speed remains constant. * 10% variations in the stress
generally do not induce fatigue failure; but changes much larger than this may neces-
sitate design for a much lower static stress in the fibers in order to avoid failure under

" Taken from the Engineering Materials Handbook, edited by Mantell, Figure 32-4.
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. Figure 10: Fatigue failure in steel springs

repeated cycling. Fatigue failure in steel springs is a thoroughly investigated problem.
Figure (10) shows a decrease of a factor of at least two between the one time loading
strength and the 10' cycle strength. The long term and fatigue effects are not additive;

0 to a certain extent repeated cycling merely hastens the onset of what would have hap--
pened eventually under sustained load. However, additional abrasion damage to fibers
as they flex is known to be an important degradation mechanism to glass fibers; it may
be important for other brittle materials also.

For some purposes, for example a once-per-day loading and unloading, design for
10,000 stress cycles might be adequate. This would be called a 25 year design. For a

* once an hour cycling, as might be met in low earth orbit, 25 year design calls for
3xl0' cycles. For the likely land mobile applications, trucks, buses, and constantly .

used passenger cars such as taxis, conservative design would call for stress derating to
* - 0' cycles. Note that the flywheel is not designed to fail after this number of cycles;

the stresses are merely to be derated on cyclic use basis.

'.' A basic view of this memorandum is that the fibers do not reinforce the mai'x; the
~matrix merely holds the fibers in place. Where a continuous filament can be layer

.' wound to provide the strength, there is experimental evidence to support this view. In
'. one set of experiments glass fibers (sized with "H-iTS", an adherent for epoxies) were
. layer wound to reinforce a thin walled cylindric bottle. The bursting stress in these

*@ fibers (300,000 psi) 'laid up dry" was consistently as high as when they were impreg-
nated with a matrix material. 9

Nevertheless, the conventional experimental composite R&D has been directed
towards the reinforced matrix. Accordingly, supplementary sources of information
about potential matrix materials are important. One such source is the use of these

* materials in filamentary form as textiles. Some forms of cellulose acetate and nylon
!! thread are capable of 100% elastic recovery after being stretched to 10% strain; these

also have static tensile strength over 10,000 psi. Of course, the context is an extruded
fiber which has undergone some initial alignment of molecules along the fiber axis.

I : 1" "Fiber Reinforced Plastic?' by L.J. Broutman, Chapter 13 in "Modern Composite

,'. Materials", Broutnian & Krock, Editors, Addison Wesley, Reading Mass, 1967
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This class of materials (high strain recovery, high static strength) merits careful exam-
ination for potential use as the matrix in a limp fly wheel design.

Inasmuch as the flywheel necessarily operates with at least a few percent strain, the
properties of its materials should be selected with large strain and failure of individual
stands or pockets of material in mind. It is argued below that the high strength fibers
should ideally exhibit some plastic flow at failure (see subsection on steel wire below);
while the matrix in which they are imbedded should stiffen as tensile strain increases
(see subsection on stress transfer below).

3.3.1 Glass Fibers

There is an extensive literature and practice in the use of glass fibers for reinforce-
ment. Individual filaments, rapidly drawn and coated to prevent surface corrosion,
exhibit breaking strengths between 500,000 and 700,000 psi for so-called glass types E

"" and S; fused silica fibers have reached 1,200,000 psi. These are the numbers quoted in
the textbooks.
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.a Figure 11: Flexural stress failure for E-glass in epoxy

Glass strands nearly parallel to stress

--" Unfortunately, the comrercial reality is a far cry the promise. The strongest

.-.5. commercial glass fibers are drawn continuously in bundles of several hundred strands
and sized with a interface adhesive and lubricant as the multi-strand is formed.

421. Whether because the lubrication is not wholly adequate, or because grit also enters the
thread, the resultant "fiber" is subject to tendonitis. Laid up dry in the form of wind-
ings, such fibers exhibit a bursting strength of 300,000 psi, a number which does not
change by much as epoxy is added. However, on repeated flexure, the rupture strength
drops substantially. Figure (11) shows a drop of 3-to- in the strength of E-glass at
10, flexure cycles.

It seems established that the problem with glass fibers is to protect them from
mutual abrasion and from stress corrosion by water vapor, as well as to eliminate
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imbedded sharp cornered micro particles. Evidently, these are problems in manufacture
that cannot be corrected after the fact. Interaction with manufacturer's applications
engineers is particularly important to be sure that the product that one would like to
use is

* available

* appropriate

- amenable to the handling that it will receive.

% Failing such care in specification (including specification of the coupling or sizing
material), comparisons become meaningless. Nevertheless, one of the clear advantages
of the Kevlar class of materials is that they are tough rather than brittle; and the
manufacturing process results in a well-lubricated thread ('roving') rather than an
abrasive one.

3.3.2 Steel Wire
0400 L  

1 1 1 I 1 i l

" ; , - _MINIMUM

TENSILE STRIENGT

300-

Wire ASTM

Z 150 - Music wire A228
, 0 Cr-Si, VSO A401

"100-- Stainless steel, type 302 A313
D h Hard drawn A227

. r Oil tempered A229Z U Cr V. VSQ A232
Carbon VSQ A230

0010 0050 0100 050

WIRE DIAMETER (in)

Figure 12: Variation of Strength with Wire Diameter

Z. The temptation is to dismiss steel as too heavy and too expensive a material for use in
high energy storage flywheels. Nevertheless steel for use in springs is one of the best

"" understood and reliable of engineering materials. This fact is illustrated by a
handbook plot of the strength of steel wire vs diameter, shown in Figure (12). What

* is plotted in minimum strength from samples from a variety of melts, rather than an
"average" strength or mere research sample result.

: In addition, steel is tough and not subject to brittle fracture. The working stress is
" .-. a factor of three or four (for 10' cycle design) above that available from glass fiber.

Moreover, steel is not necessarily expensive (see below).
..
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Two main types of high strength steel are used in springs, a high carbon steel
called "music wire' and type 302 stainless. A variant of music wire, called 'piano
wire" has about 30% greater strength (literally, over the long pull). Figure (12) shows
the dependence of the strength of drawn wires on the diameter: the finer the wire, the
stronger. Unfortunately, is is also true: the finer the wire, the more expensive. In wire

'. s iz e s u n d e r a fe w m ils , s ta in le s s s t e e l w ir e is le s s e x p e n s iv e t h a n h ig h c a r b o n s t e e l .
Even so, in 100 pound lots the current (Jan 1984) price of 302 stainless is $6.50 per lb
for 10 mil wire, and $9.50 per lb for 5 mil wire. This must be compared with prices
for music wire in 100 lb lots, which at the same time was $2.70 per lb for 10 mil wire
and only 9 It per lb for 31 mil wire. In terms of price, the higher strength of the finer
wire may not be justified. These prices also must be compared with $12 per lb for
Kevlar 49 and under a dollar per pound for continuous E glass fiber. (S-glass cost
about $4 per lb.)
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Figure 13: Fatigue Design Curves for Steel Springs

Figure (13) shows a typical set of design curves for the use of two types of steel
for multi-cycle stress, taken from the Metals Handbook. On the right are curves

%I- which give maximum and minimum stress limits for fixed wire diameter and a range of
- cycles to failure. On the right are design limits for a range of wire diameters and

0 . fi x e d 1 0 ' m in im u m c y c le s to f a ilu r e . E v id e n t ly , a 1 0 ' c y c le d e s ig n fo r s t r e s s c y c lin g
between 25,000 psi and 100,000 psi requires music wire with 10 mils diameter (at $2.70
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per pound) However, the sacrifice of 10% in strength or a reduction to 10' cycle of
loading, would permit the use of 31 mil wire ($0.91 per lb).

In addition to the extent to which the properties of spring steel are documented in
dispassionate literature, the use of steel has another outstanding advantage for the
experimental construction of "floppy" flywheels. When a strand gives, in neither snaps
nor unloads; it merely refuses to take any more load as it is stretched further. In a
floppy design, this stretching produces graceful degradation

1. because the stress to be redistributed over neighboring fibers is merely the
excess over the yield stress for the weak fiber, not the entire stress. Even if
yield results in a slight decrease in stress in the affected fiber, the redistribu-
tion is modest. As a result, delamination of the matrix surrounding the weak
fiber (or other major elastic event) is not an immediate consequence of "give'
in the weak fiber.

2. because the total local strain merely increases slightly when fiber failure
occurs, the floppy structure can respond by simply taking on a slightly larger
radius. Although this in turn increases the average forces, and can lead
thereby to catastrophic failure, the very increase in diameter is an early warn-
ing of the impending catastrophe.

Any other material that exhibits plastic flow when it fails in tension would have simi-
lar advantages for use in a flywheel.

Unfortunately, in most material systems, high strength is obtained as the expense of
the capacity for plastic flow, so that ultimate failure (breakage) occurs at a compara-
ble value of energy delivered, but at much lower strain and much higher stress. Evi-
dently, if one were able to specify the properties of the material at failure, one would
choose so that the strain diagram would have roughly equal regions of non-yield stress
and plastic flow before rupture. Such a material would have ample latitude to permit
plastic flow in weak fibers, and to allow significant expansion in flywheel diameter as
a warning of impending rupture.

3.3.3 Graphite and Aramid Fibers

Glass fiber differs from bulk glass largely on account of the speed with which it is
pulled; its physical properties remain not far from isotropic. In steel wire, pulling
results in preferred crystal orientation with respect to the direction of pull, and some
elongation of the crystal structure; but it remains a strong and tough material in all
directions. However, many other kinds of materials exhibit pronounced variations in
strength with respect to the fiber axis.

Aramid fibers (Kevlar) and viscose rayon (cellulose acetate) are examples of non-
crystalline materials in which pulling the fiber lines up long-chain molecules to give

* high strength along the fiber axis, and a corresponding shear strength at right angle to
it. Such materials can be split apart relatively easily along the fiber axis; although the
resulting problem with "split ends" can be less than that of the TV ads for hair dress-

'S ing treatments, the longitudinal shear strength of such fibers can easily be less than the
strength of the glue bond to the surrounding matrix.

3"
A"
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Graphite fibers also suffer from relatively low shear strength, in this instance
because graphite has a layered molecular structure. In the plane of a layer (which
includes the fiber axis), the material has high strength; but the layers themselves sepa-
rate easily. A bundle of such fibers has high transverse shear strength in part because
random twist ensures that some stiff, strong fibers are available to take the transverse
loads at any angle. However, the longitudinal shear strength is parallel to the slip
planes for all fibers; it is accordingly low.

Notwithstanding the problems of Kevlar and graphite, longitudinal shear weakness
(and other transverse strength problems) are not a necessary feature of oriented
materials. A modest amount of cross-linking would prevent the plastic fiber from
splitting; almost every other single crystal fiber belongs to a system which does not
have the laminar structure of the graphite crystal. It is in a sense unfortunate that
two high strength materials which are so relatively easy to'make are so weak longitu-
dinally.

Graphite fiber and Kevlar fiber both have a physical property which is a bell-
weather of problems with elastic homogeneity. The temperature coefficient of both
materials is negative along the fiber axis, while the volume coefficient in both cases is

Ipositive and normal for the melting point of the material. This indicates a taut struc-
ture along the fiber axis, but a relatively loose structure at right angles. Indeed the

* linear coefficient of expansion of Kevlar is sufficiently high (50 ppmC) across the
fiber as to raise compatibility problems in some composite systems.

3.4 STRESS TRANSFER

N,1 LONGITUDINAL LAYERS
, SMOOTH ALONG SIDES

CRISS CROSS OVER ENDS
SMOOTH LIKE BALL OF TWINE

CIRCUMFERENCE ONE LONGITUDE LAYER
WINDING FOR EACH TWO CIRCUMFERENTIAL
2 LAYERS

*(. .' INSIDE OF BO -ILE

=° l'."" ] .- METAL INTERIAYE:R OR GASKET

Figure 14: Winding and Metallic Interlayer in Pressure Bottle

If a fiber is loaded mainly by its own spinning mass there is no need to discuss
stress transfer. However, if internal pressure is being contained, then some stress trans-
fer mechanism is required. It need not be a sophisticated one. The fact that the inner
layers of a winding cannot stretch unless the outer ones do so also suffices. (Note
that this doesn't work the other way around. Outer layers can be stretched without
stretching the inner ones.)
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Figure (14) exhibits the typical manner in which fiber reinforced pressure bottles
are made. A metal internal bottle is used as a form on which to wind the fiber, and
as a gasket. Continuous filament, precoated with bonding agent is then wound circum-
ferentially around the bottle; and also axially. Two circumferential layers are wound
for each axial layer, this being the ratio of forces involved. The wound structure is
then impregnated with matrix material and cured.

Bottles of this sort have also been tested laid up without matrix, and impregnated
without being cured. 19 Fiber loading up to over 300,000 psi was inferred when bottles
were burst by internal pressure. Clearly, no mechanisms for stress transfer are
required other than inner fibers pushing on outer ones with the aid of fiber to fiber
friction.

Now suppose that the winding is impregnated with an encapsulant which mechani-
cally surrounds the fibers but does not actually bond to them. If a force is applied to
this matrix at right angles to the fibers, the fibers will resist on that part of the fiber
surface that faces the direction of the force. The land or bridge of material that
pushes on each fiber experiences shear stress roughly equal to pressure it exerts on the
fiber. If the fluid pressure is P and there are M layers, the pressure on each layer is
P/M. Evidently, a matrix that can withstand a pressure P and remain solid can also
withstand a shear stress of P/M.

Conventional wisdom holds that longitudinal shear strength is needed at the fiber
matrix interface to contain broken fibers. The situation is not amenable to exact anal-
ysis. However, if there is a 'bond' between the fiber surface and the matrix, then at a
break among densely packed fibers there is a strain concentration extending roughly
4(Y/G) diameters along the fiber, where G is the shear modulus of the matrix and Y
is Young's modulus in the fiber. To sustain such a strain requires a shearing stress
along the fiber of the order of magnitude ,/(G/Y) times the unbroken fiber stress. For
most choices of materials that are otherwise compatible with a limp flywheel, this
shearing stress is too much. The fiber-matrix bond simply unzips.

However, non-bonding of matrix to fiber is not the end of the story. The matrix is
under compression. As a result there is a static friction force on the fiber to hold it in
place, even if there is no bond. Moreover, the magnitude of this force (determined by
a coefficient of friction of at least 0.1, more likely 0.3) tracks with the stress in the
surrounding fibers, since both are the immediate result of the pressure PI Evidently,
such forces will be most effective in holding load on a broken fiber in the inner layers,
where the pressure in the matrix is highest. There will be little benefit in the outer-
most layer. There, the most that can be expected is that the matrix will hold the bro-
ken fiber on the wheel.

Once again, conventional wisdom appears to be confounded. A high strength shear
bond is not required, except perhaps in the outermost fiber layers of the wheel.

All materials have a tendency to plastic flow under sufficiently great pressure. If
such flow takes place, the fibers at the region of flow will unload, since the differen-
tial pressure which loads them has relaxed. The entire pressure load must be taken up
by fibers outboard of the flow region. The result is cumulatively catastrophic. As the
flow zone moves outward, eventually the remaining fibers can no longer contain the
pressure and burst.
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Since all materials are non-linear at high strain, one should choose the non-lin-
earity of the matrix so that non-linearity unequally loads the inner fibers. As noted
above, the presence of the outer fibers will act to distribute the load again uniformly.

*However, if the matrix weakens so that the inner fibers are understretched, as also
noted above, the outer fibers will simply see excess load. Thus the preferred non lin-
earity for the matrix is for it to get stiffer at high stress, not weaker.

U, '..
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Appendix A

FLYWHEEL FORMULAS

Here we catalog some of the formulas applicable to flywheel performance.

A. 1 RELATIONSHIP BETWEEN PERIPHERAL SPEED AND E/M

The kinetic energy which can be stored by a mass m moving at a speed v is simply
' .' m0/2. The maximum speed within a flywheel rotor occurs on the periphery, where v

is OR. The weight of the mass m is m. Hence the most energy E that can be stored
is related to the weight w by

E/w = g v2/2 (A-i)

When E/m is expressed in W-hr/lb and v in feet/s, this equation becomes

E/m = v1/171000 (A-2)

This is a maximum performance, unrelated to the materials of which the rotor is built.
It is significant in that establishing an E/m goal necessarily establishes a target periph-
eral speed for the wheel. Even for E/m at 1 W-hr/lb, the wheel must move at over
400 ft/s. This is at least a subsonic speed in air, but one at which the rim can pump
air efficiently.

If the goal rises to 25 w-hr/lb, the wheel speed rises to at least 2000 ft/s. This is
supersonic with respect to air. If supersonic effects are to be avoided, the housing
must either be evacuated to hard vacuum, or backfilled with H2 (speed of sound 4400
ft/s) or He (speed of sound 3000 ft/s).20 The windage loss associated with such
wheel speeds is discussed in Appendix (A.6) below.

O 20 Large electrical generators are backfilled with H, in this country, in orrder to cut
down on windage losses and to improve the cooling available from the circulating
gas.
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A.2 VOLUME OF HIGH STRENGTH MATERIAL

Suppose that high strength material is used to restrain mass m, either by

1. a radial spoke of cross section A and length R, or

2. by a circumferential belt of perimeter 2nR and cross section A.

The centrifugal acceleration at the position of m at radius R is mO/R. In either case,
.. the fiber stress in the high strength material is T (along the spoke or along the cir-

cumference, respectively)

T = mv2/RA (A-3)

The term in the denominator on the rhs of this equation is the volume V of the fibers;
the numerator is simply twice the stored kinetic energy E. Thus

TV = 2E (A-4)

This relationship states that for mass concertrated on the perimeter of the flywheel,
and a working stress T in the high strength u strair-' a volume V of the high strength
material will be required, given by 2E/T.

To the extent that all high strength materials are to be loaded to approximately
the same working stress, approximately the same volume of each material is required
for a given energy storage (remember, most of the total mass is being constrained bythe material). It follows that the costs of the fibers have to be adjusted by relative
density to obtain relative cost in use in the wheel. In this sense, an aramid fiber at
$12 per pound is only a third as expensive as specialty steel wire at $6 per lb, since
the latter is six times as dense. However, against music wire at $0.91 per pound, the
aramid fiber would have to cost less than $5 per lb to be cost competitive. 2'

A.3 SPECIFIC STRENGTH

* .. "By judicious multiplication and division by density in the last formula, and by combi-
nation with previous formulas one obtains

T/pg = 2 E/m (A-5)

We have used a mass density here in order to exhibit the role of g in the formulas.
Ordinarily, the result is stated using the weight density p*. If T is measured as force
per square inch, and p* in the same force units per cubic inch, the specific stress has
the units of length (inches). With T/p* in inches and E/m in W-hr/Ib, the last equa-

"@ tion becomes

T/p* = 64000 E/m (A-6)

S21 Indeed, the price of tire cord grade aramid fiber was roughly $5 per pound. Kevlar

29 (lower stiffness but comparable tensile strength to the '49' grade) was about $6
per lb in January 1984.
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A.4 PRESSURE AND FIBER STRESS AT CURVED SURFACE

Suppose a curved surface with homogenous surface tension y per unit length along an
imaginary cut through the surface, and let I/r* be the total local curvature. Then
static equilibrium with a fluid pressure P just under the surface is obtained when

Y Pr* (A-7)

where I/r* is the sum of the two principal curvatures I/r, and I/r 2:

/r* = l/r + l/r2  (A-8)

Suppose next that the surface tension is not homogenous, but instead has a magnitude
F in a specific local direction determined by physical lay of fibers. Let r be the local
radius of curvature of the fibers. Then the surface fiber force F will be in equilibrium
with subsurface pressure P if

F = Pr (A-9)

It follows that if the average thickness of the fiber layer is s the fiber stress T is
related to the pressure P by

P = T s/r (A-10)

A.5 PRESSURE - STRESS - VOLUME RELATIONSHIPS

The pressure P of the flywheel fluid mass conforms to both local and global con-
straints. Evidently, if the mass M of the flywheel is distributed roughly uniformly
along the surface of a cylinder of height h and radius R, the centrifugal pressure is

P = M R02/2nRh (A-1 1)

Evidently, also if the fluid has a density p, the radial dependence of P is locally

dP = pRO2 dR (A-12)

A.5.1 Global Relationships

The global pressure relationship, Eq (A-1 1), has two interpretations:

I. One can cancel the factor of R and combine with results of the previous sub-
section to obtain a design formula for the fiber stress T,

Tf = M01 r/2wsh (A-13)

2. One can multiply numerator and denominator in Eq (A-1 1) by R to obtain
an energy - volume relationship
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P =E/VCA (A-14)

where V is the cylinder volume. The conclusion reached is that low pres-
sure impes a large flywheel

VtfV- = 2T/P (A-15)

A.5.2 Radial Loop Fiber Stress

Note that the angle 0 in Figure (6) is measured to the y-axis. Thus, in terms of the
Figure, dy/dx is cotO (rather than tanO if 0 were measured to the x-axis). Note also
that we follow here Eagle's' s notation in ascribing to the sine-type Jacobian elliptic
function a real period of 21 and unit magnitude residues at its poles. The resulting
"Sn" function (scaled from the conventional "sn" function) has real zeros at x=0 and
x=n as does the sine function. The maximum at x=w/2 has a numerical value of
2kK(k)/, where K( ) is the conventional complete elliptic integral of the first kind.
The slope at x-O is (2/W) 2kK2. (Eagle uses ' for 2K/u, resulting in the formula kh
for the maximum and k/9 for the slope at the origin).

A.5.2.1 Rotating Loop

The U-shaped loop is assumed attached to the x-axis as an axle at an angle 0.. The
force per unit length normal to the plane of the paper is assumed to be T(x). Since
the filament (neglecting gravity) is not subject to forces in the x-direction, the x--com-
ponent of T, viz. TsinO, is constant at some value F. It follows that the y-component
of the linear stress in the fiber is Fcote. Now let ds be an element of length along the
fiber. The force acting on the element ds is cotOdF, in equilibrium with acceleration
force ay 0 2ds. Inasmuch as F is constant, this yields

F csc6 d9/ds = y U0 2  (A-16)

Now ds/dO is simply the local radius of curvature r. At the extreme end of the loop,
where y=y., csco is unity and rr,. Eq (16) can thus be reduced to

l+cotV = yr/roro (A-17)
.,

Introduction of the geometric identities

cotO = dy/dx =

r = (l+y 2)1.5 (A-1S)

produces after some algebraic manipulation

y'/(l+y' )o. = -Y/yoro (A-19)
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Multiplying both sides by y' produces an equation that can be integrated by inspection
on both sides. Choosing the constant of integration so that the angle at the axle is 00
then gives

'/(l+y' 2) = cscG0 - y2/2yoro (A-20)

Now, the integration of this equation to obtain y as a function of x requires the sine-
type of Jacobian elliptic function. If we use the Eagle notation and set the ends of
the loop at x=0 and x=7, then Eagle finds the equation of the loop to be

y -- (2/hl(l-k2 )) Sn(x,k) (A-21)

However, there is an intermediate conclusion that can be reached from Eq (20). In
particular, at y=y., Y vanishes, so that

cscG. =  I + y./2r. (A-22)

Now, if this were the case dealt with in the next section, where a pressure P propor-
tional to y is resisted by T/r locally, then y./ro would be the physical ratio P/T.
Here such is not the case. However, the ratio y./ro is clearly a geometric property of
the Sn curve which does not depend on the particular scaling assumptions used in
describing the curve. In fact, for a Sn (or sn) curve

yo/ro = 4k 2/( 1-k2) (A-23)

Another geometric property is the slope of the curve at the origin:

cotO = 2k/(I-kl) (A-24)

The problem is to determine k for a particular physical situation. Suppose we
have available a length L of the fiber, and attach it to the axle. We don't yet know
what 0 will be. Eagle gives L in terms of the preceding Sn equation as

L = (2E/K(I-k 2) - 1) (A-25)

where E and K are conventional elliptic integrals. This makes L calculable if k is
given; the inversion to obtain k from L is numerical cut and try. If we suppose that

0 we have available a spool of fiber and reel out enough of it to make the connections
at the axle and a loop of the right shape reaching to y., we still have the problem that
o remains a function of the (as yet undetermined) parameter k.

In Eagle's notation, the relative height of the Sn function is U. The corresponding
distance between tie points is v. But Eagle finds that to satisfy the dynamic conditions

yo = 2k/(I-k 2) (l/kh2) Sn(k,w/2) (A-26)

But the first factor, in brackets on the rhs of this equation in simply cot0.; and x. for
these last few equations is w/2. Moreover, Eagle's h is the usual elliptic integral K(k)
divided by w/2. It follows that

y./x - cot0dK(k)= 2k/K(kXl-k 2) (A-27)
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As noted above, this equation can only be inverted numerically to obtain k for a given

A.5.2.2 Pressure Loaded Radial Loop

Here we assume that y=O is the free surface of the liquid being restrained, and that the
liquid layer is thin compared with the flywheel radius R, so that the pressure P is pro-
portional to y

P = pyRI (A-28)

Now, the fiber is presumed massless and limp, so that the force per unit circumferen-
tial length, F, must be constant. The pressure must then be in equilibrium with F/r.
It follows that inside the free surface, where the pressure is zero, r must be infinite
(the filament must be straight).

This being so, the angle Oe is determined by the geometry of the attachment at the
axle. Even though the ultimate solution for the shape of the curve at the tip of the
pancake is an elliptic function, in this case 0., and consequently the elliptic parameter
k, is predetermined.

From the equilibrium condition,

F/r = pyRl 2  (A-29)

This equation, of course, applies at the tip, where y=y. and r=r.. Normalizing Eq (29)
by its values at the tip, and making use of the geometric identity that

r = (l+y' )I1/y (A-30)

- produces the differential equation

y"/(l+y' )1. = -y/yOrO (A-31)

After multiplying both sides by y, the equation can be integrated as it stands, making

use of the substitution of cote for y on the lhs. The result is

sine = sine. + yl / 2yr. (A-32)

Evidently, at y=y. sinG is unity, so that (writing r for y,/r 0)

sin90 = 1 - I/2 (A-33)

The next step in the integration yields elliptic integrals. Let o be an angle parameter.
Then the parametric equations for x and y have the form

x = 2E(ko) - F(ko)

y = 2k coso (A-34)
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where E and F are the conventional incomplete elliptic integrals of the irt and sc-
ond kind, respectively. With respect to the parametric equations, moreover, the total
length of the fiber between x-axis crossings is L(k) and the angle at the axis is O.(k)

L(k) = 2K(k)
.-.

sinG0 = I - 2k (A-35)

It follows that k2 is r/4.

Finally, one can integrate 2xdy to obtain the area of the cross section between the
fiber loop and the x-axis for the purpose of finding the relationship between the pres-
sure P at the tip and the mass of fluid causing it. In terms of the Eqs (34), this area
A is 22

A = 4k .. '21 (2E - F) sin(u) du

= 4k (l-k 2)°.5  (A-36)

To use this result, note that the pressure at the tip is F/ro and that r. in turn is y./I
or yo/4k. But in terms of Eqs (34), y. is 2k. Thus, r. is 1/2k and the pressure at the
tip is 2kF. But, in terms of the rotational dynamics, the pressure is p).lR). Equating

.. the two yields

F = pRfO" (A-37)

Note that this result for F is independent of the choice of kd All other parameters
being equal, the maximum stored energy is thus obtained by maximizing the cross-sec-
tional area A of the fluid mass accommodated by a given stress. By inspection of
Eq (36), this maximum occurs for kl= 1/2, so that A=2.

Since there are two fibers, the force in each supports a mass p per unit circumfer-
ence at centrifugal acceleration R1. This is exactly same force-mass relationship as
would exist in a weightless radial spoke supporting this mass. (A non-optimum k
leaves the force in the spoke unchanged while the mass supported drops). The con-
clusion is that for thin fluid rims, the radial loop support system is as efficient in use
of high strength fiber as is a spoke support system.

'. .--

,1

22 For the integrals, see Gradshten & Ryzhik, Tables of Integras, Series, and Prod-
ucts, 4th Edition, Alan Jeffry editor of the English version, Academic Press, New
York, 1980
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A.6 WINDAGE LOSS

The calculation of the windage loss for a rotating disk or cylinder is contained in an
out-of-print government publication.23

All wheels operating at high peripheral speed are potential pumps. If possible
pumping action is not anticipated, the losses can be very high. However, with a close-
fitting casing the gas between the wheel and the casing will circulate at one-half the
angular velocity of the wheel, and the pumping will be confined to two thin boundary
layers, one adjacent to the wheel and the other adjacent to the casing.

Under such circumstances is is possible to define a coefficient CM that related
friction force to speed and area, where C. depends on the Reynolds number Re. For
both sides of a disk which has radius r, spinning with angular velocity 0, the formulas
for the total torque T are

T = CMpO2r5/2

r= CM pv2r3/2 (A-38)

where the second equation is obtained from the first by substituting the peripheral
speed v for Or.

Reynolds number in such cases is computed from v and r. It is generally in the
range 101, where C. is nearly independent of Re at 0.005, and for which the boundary
layer is roughly one thousandth of a radius thick. Similar formulas hold for the out-
side surface of a spinning cylinder, except that the length of the cylinder replaces one
power of r.

Evidently, for a given angular speed only the largest radius portions of a spinning
assembly produce a significant contribution to the windage loss. The actual power
loss V is found by multiplying r by the angular velocity:

V = Cm pv'r 2/2 (A-39)

for the sides of the disk. For air at atmospheric pressure, with p equal to 1.3 kg/m3,
and r=0.Sm, a peripheral speed of 150 m/s would result in a 3 kW windage loss.
Replacing the air with hydrogen would reduce the loss to 200 W.

23 'Experiments on Drag of Revolving Disks, Cylinders, and Streamline Rods", by
Theodore Theodorsen and Arthur Regier, NACA Report No 793, Superintendent
of Documents, Washington DC, 1945

.
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